There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(-(\frac{x}{a}) - \frac{{({x}^{2} - {a}^{2})}^{\frac{1}{2}}}{a})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-x}{a} - \frac{(x^{2} - a^{2})^{\frac{1}{2}}}{a})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-x}{a} - \frac{(x^{2} - a^{2})^{\frac{1}{2}}}{a})\right)}{dx}\\=&\frac{(\frac{-1}{a} - \frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} - a^{2})^{\frac{1}{2}}})}{a} + 0)}{(\frac{-x}{a} - \frac{(x^{2} - a^{2})^{\frac{1}{2}}}{a})}\\=&\frac{-1}{(\frac{-x}{a} - \frac{(x^{2} - a^{2})^{\frac{1}{2}}}{a})a} - \frac{x}{(\frac{-x}{a} - \frac{(x^{2} - a^{2})^{\frac{1}{2}}}{a})(x^{2} - a^{2})^{\frac{1}{2}}a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !