Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2({e}^{x}){({e}^{x} - 1)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2({e}^{x} - 1)^{\frac{1}{2}}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2({e}^{x} - 1)^{\frac{1}{2}}{e}^{x}\right)}{dx}\\=&2(\frac{\frac{1}{2}(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0)}{({e}^{x} - 1)^{\frac{1}{2}}}){e}^{x} + 2({e}^{x} - 1)^{\frac{1}{2}}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&\frac{{e}^{(2x)}}{({e}^{x} - 1)^{\frac{1}{2}}} + 2({e}^{x} - 1)^{\frac{1}{2}}{e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return