There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{3}^{x}x}{3} - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x{3}^{x} - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x{3}^{x} - 2\right)}{dx}\\=&\frac{1}{3} * {3}^{x} + \frac{1}{3}x({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)})) + 0\\=&\frac{{3}^{x}}{3} + \frac{x{3}^{x}ln(3)}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !