Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(80{x}^{2} + 96x + 31))}{(5{x}^{2} + 6x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(80x^{2} + 96x + 31)}{(5x^{2} + 6x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(80x^{2} + 96x + 31)}{(5x^{2} + 6x + 2)}\right)}{dx}\\=&(\frac{-(5*2x + 6 + 0)}{(5x^{2} + 6x + 2)^{2}})sqrt(80x^{2} + 96x + 31) + \frac{(80*2x + 96 + 0)*\frac{1}{2}}{(5x^{2} + 6x + 2)(80x^{2} + 96x + 31)^{\frac{1}{2}}}\\=&\frac{-10xsqrt(80x^{2} + 96x + 31)}{(5x^{2} + 6x + 2)^{2}} - \frac{6sqrt(80x^{2} + 96x + 31)}{(5x^{2} + 6x + 2)^{2}} + \frac{80x}{(5x^{2} + 6x + 2)(80x^{2} + 96x + 31)^{\frac{1}{2}}} + \frac{48}{(5x^{2} + 6x + 2)(80x^{2} + 96x + 31)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return