There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(m{u}^{2}r)}{(os({(R + \frac{r}{o})}^{2} + {(X + x)}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mu^{2}r}{(osR^{2} + 2rsR + \frac{r^{2}s}{o} + 2osXx + osX^{2} + osx^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mu^{2}r}{(osR^{2} + 2rsR + \frac{r^{2}s}{o} + 2osXx + osX^{2} + osx^{2})}\right)}{dx}\\=&(\frac{-(0 + 0 + 0 + 2osX + 0 + os*2x)}{(osR^{2} + 2rsR + \frac{r^{2}s}{o} + 2osXx + osX^{2} + osx^{2})^{2}})mu^{2}r + 0\\=& - \frac{2mu^{2}rosX}{(osR^{2} + 2rsR + \frac{r^{2}s}{o} + 2osXx + osX^{2} + osx^{2})^{2}} - \frac{2mu^{2}rosx}{(osR^{2} + 2rsR + \frac{r^{2}s}{o} + 2osXx + osX^{2} + osx^{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !