There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x) + \frac{(4x + 11)({x}^{2} + x)}{24}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x) + \frac{1}{6}x^{3} + \frac{5}{8}x^{2} + \frac{11}{24}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x) + \frac{1}{6}x^{3} + \frac{5}{8}x^{2} + \frac{11}{24}x\right)}{dx}\\=&\frac{1}{(x)} + \frac{1}{6}*3x^{2} + \frac{5}{8}*2x + \frac{11}{24}\\=&\frac{1}{x} + \frac{x^{2}}{2} + \frac{5x}{4} + \frac{11}{24}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !