There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (e^{x - 1}){\frac{1}{e}}^{(ax)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\frac{1}{e}}^{(ax)}e^{x - 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\frac{1}{e}}^{(ax)}e^{x - 1}\right)}{dx}\\=&({\frac{1}{e}}^{(ax)}((a)ln(\frac{1}{e}) + \frac{(ax)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))e^{x - 1} + {\frac{1}{e}}^{(ax)}e^{x - 1}(1 + 0)\\=&-a{\frac{1}{e}}^{(ax)}e^{x - 1} + {\frac{1}{e}}^{(ax)}e^{x - 1}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !