There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2{(1 + x)}^{(\frac{3}{2})}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{3}(x + 1)^{\frac{3}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{3}(x + 1)^{\frac{3}{2}}\right)}{dx}\\=&\frac{2}{3}(\frac{3}{2}(x + 1)^{\frac{1}{2}}(1 + 0))\\=&(x + 1)^{\frac{1}{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !