There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(xln(x) - x)}{2} - \frac{{x}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}xln(x) - \frac{1}{2}x - \frac{1}{2}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}xln(x) - \frac{1}{2}x - \frac{1}{2}x^{2}\right)}{dx}\\=&\frac{1}{2}ln(x) + \frac{\frac{1}{2}x}{(x)} - \frac{1}{2} - \frac{1}{2}*2x\\=&\frac{ln(x)}{2} - x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !