Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ln(a) + \frac{1}{(2sqrt(3) + 1 - {a}^{2} - {c}^{2})} + {\frac{1}{c}}^{3})x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(a) + \frac{x}{(2sqrt(3) - a^{2} - c^{2} + 1)} + \frac{x}{c^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(a) + \frac{x}{(2sqrt(3) - a^{2} - c^{2} + 1)} + \frac{x}{c^{3}}\right)}{dx}\\=&ln(a) + \frac{x*0}{(a)} + (\frac{-(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0 + 0 + 0)}{(2sqrt(3) - a^{2} - c^{2} + 1)^{2}})x + \frac{1}{(2sqrt(3) - a^{2} - c^{2} + 1)} + \frac{1}{c^{3}}\\=&ln(a) + \frac{1}{(2sqrt(3) - a^{2} - c^{2} + 1)} + \frac{1}{c^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return