There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({\frac{1}{a}}^{2} + \frac{1}{(2sqrt(3) + 1 - {a}^{2})})x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{a^{2}} + \frac{x}{(2sqrt(3) - a^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{a^{2}} + \frac{x}{(2sqrt(3) - a^{2} + 1)}\right)}{dx}\\=&\frac{1}{a^{2}} + (\frac{-(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0 + 0)}{(2sqrt(3) - a^{2} + 1)^{2}})x + \frac{1}{(2sqrt(3) - a^{2} + 1)}\\=&\frac{1}{a^{2}} + \frac{1}{(2sqrt(3) - a^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !