There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(tan(\frac{x}{2} + \frac{π}{4}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(tan(\frac{1}{2}x + \frac{1}{4}π))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(tan(\frac{1}{2}x + \frac{1}{4}π))\right)}{dx}\\=&\frac{sec^{2}(\frac{1}{2}x + \frac{1}{4}π)(\frac{1}{2} + 0)}{(tan(\frac{1}{2}x + \frac{1}{4}π))}\\=&\frac{sec^{2}(\frac{1}{2}x + \frac{1}{4}π)}{2tan(\frac{1}{2}x + \frac{1}{4}π)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !