There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{x}{({x}^{2} + a)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(x^{2} + a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(x^{2} + a)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + a)^{2}})x + \frac{1}{(x^{2} + a)}\\=&\frac{-2x^{2}}{(x^{2} + a)^{2}} + \frac{1}{(x^{2} + a)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x^{2}}{(x^{2} + a)^{2}} + \frac{1}{(x^{2} + a)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + a)^{3}})x^{2} - \frac{2*2x}{(x^{2} + a)^{2}} + (\frac{-(2x + 0)}{(x^{2} + a)^{2}})\\=&\frac{8x^{3}}{(x^{2} + a)^{3}} - \frac{6x}{(x^{2} + a)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{3}}{(x^{2} + a)^{3}} - \frac{6x}{(x^{2} + a)^{2}}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + a)^{4}})x^{3} + \frac{8*3x^{2}}{(x^{2} + a)^{3}} - 6(\frac{-2(2x + 0)}{(x^{2} + a)^{3}})x - \frac{6}{(x^{2} + a)^{2}}\\=&\frac{-48x^{4}}{(x^{2} + a)^{4}} + \frac{48x^{2}}{(x^{2} + a)^{3}} - \frac{6}{(x^{2} + a)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-48x^{4}}{(x^{2} + a)^{4}} + \frac{48x^{2}}{(x^{2} + a)^{3}} - \frac{6}{(x^{2} + a)^{2}}\right)}{dx}\\=&-48(\frac{-4(2x + 0)}{(x^{2} + a)^{5}})x^{4} - \frac{48*4x^{3}}{(x^{2} + a)^{4}} + 48(\frac{-3(2x + 0)}{(x^{2} + a)^{4}})x^{2} + \frac{48*2x}{(x^{2} + a)^{3}} - 6(\frac{-2(2x + 0)}{(x^{2} + a)^{3}})\\=&\frac{384x^{5}}{(x^{2} + a)^{5}} - \frac{480x^{3}}{(x^{2} + a)^{4}} + \frac{120x}{(x^{2} + a)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !