There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(\frac{1}{(2x)}) + x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(\frac{\frac{1}{2}}{x}) + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(\frac{\frac{1}{2}}{x}) + x\right)}{dx}\\=&ln(\frac{\frac{1}{2}}{x}) + \frac{x*\frac{1}{2}*-1}{(\frac{\frac{1}{2}}{x})x^{2}} + 1\\=&ln(\frac{\frac{1}{2}}{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !