There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{5x}{y} - 5arctan(xsqrt(y)){\frac{1}{y}}^{(\frac{3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5x}{y} - \frac{5arctan(xsqrt(y))}{y^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5x}{y} - \frac{5arctan(xsqrt(y))}{y^{\frac{3}{2}}}\right)}{dx}\\=&\frac{5}{y} - \frac{5(\frac{(sqrt(y) + \frac{x*0*\frac{1}{2}}{(y)^{\frac{1}{2}}})}{(1 + (xsqrt(y))^{2})})}{y^{\frac{3}{2}}}\\=&\frac{5}{y} - \frac{5sqrt(y)}{(x^{2}sqrt(y)^{2} + 1)y^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !