There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 1)ln(1 + x)}{2} - \frac{{x}^{2}}{4} + \frac{x}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x^{2}ln(x + 1) - \frac{1}{2}ln(x + 1) - \frac{1}{4}x^{2} + \frac{1}{2}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x^{2}ln(x + 1) - \frac{1}{2}ln(x + 1) - \frac{1}{4}x^{2} + \frac{1}{2}x\right)}{dx}\\=&\frac{1}{2}*2xln(x + 1) + \frac{\frac{1}{2}x^{2}(1 + 0)}{(x + 1)} - \frac{\frac{1}{2}(1 + 0)}{(x + 1)} - \frac{1}{4}*2x + \frac{1}{2}\\=&xln(x + 1) + \frac{x^{2}}{2(x + 1)} - \frac{1}{2(x + 1)} - \frac{x}{2} + \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !