Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{x}{(2 - x)}) + ax + b{(x - 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(-x + 2)}) + ax + bx^{3} - 3bx^{2} + 3bx - b\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(-x + 2)}) + ax + bx^{3} - 3bx^{2} + 3bx - b\right)}{dx}\\=&\frac{((\frac{-(-1 + 0)}{(-x + 2)^{2}})x + \frac{1}{(-x + 2)})}{(\frac{x}{(-x + 2)})} + a + b*3x^{2} - 3b*2x + 3b + 0\\=&\frac{1}{(-x + 2)} + \frac{1}{x} + a + 3bx^{2} - 6bx + 3b\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return