There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{arcsin(π){x}^{2}}{12} - 2ax + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{12}x^{2}arcsin(π) - 2ax + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{12}x^{2}arcsin(π) - 2ax + 2x\right)}{dx}\\=&\frac{1}{12}*2xarcsin(π) + \frac{1}{12}x^{2}(\frac{(0)}{((1 - (π)^{2})^{\frac{1}{2}})}) - 2a + 2\\=&\frac{xarcsin(π)}{6} - 2a + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !