There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x - 2)}^{4} + {(y - 3)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} - 8x^{3} + 24x^{2} - 32x + y^{4} - 12y^{3} + 54y^{2} - 108y + 97\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} - 8x^{3} + 24x^{2} - 32x + y^{4} - 12y^{3} + 54y^{2} - 108y + 97\right)}{dx}\\=&4x^{3} - 8*3x^{2} + 24*2x - 32 + 0 + 0 + 0 + 0 + 0\\=&4x^{3} - 24x^{2} + 48x - 32\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !