There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + {x}^{3}e^{-x + 1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}e^{-x + 1} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}e^{-x + 1} + x\right)}{dx}\\=&3x^{2}e^{-x + 1} + x^{3}e^{-x + 1}(-1 + 0) + 1\\=&3x^{2}e^{-x + 1} - x^{3}e^{-x + 1} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !