There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x) + (2 - x)ln(2 - x) - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x) + 2ln(-x + 2) - xln(-x + 2) - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x) + 2ln(-x + 2) - xln(-x + 2) - 2\right)}{dx}\\=&ln(x) + \frac{x}{(x)} + \frac{2(-1 + 0)}{(-x + 2)} - ln(-x + 2) - \frac{x(-1 + 0)}{(-x + 2)} + 0\\=&ln(x) + \frac{x}{(-x + 2)} - ln(-x + 2) - \frac{2}{(-x + 2)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !