There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x - 3)}{(2 - 5x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(-5x + 2)} - \frac{3}{(-5x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(-5x + 2)} - \frac{3}{(-5x + 2)}\right)}{dx}\\=&(\frac{-(-5 + 0)}{(-5x + 2)^{2}})x + \frac{1}{(-5x + 2)} - 3(\frac{-(-5 + 0)}{(-5x + 2)^{2}})\\=&\frac{5x}{(-5x + 2)^{2}} - \frac{15}{(-5x + 2)^{2}} + \frac{1}{(-5x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !