Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x + sqrt({x}^{2} - {a}^{2})) - sqrt({x}^{2} - {a}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(x + sqrt(x^{2} - a^{2})) - sqrt(x^{2} - a^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x + sqrt(x^{2} - a^{2})) - sqrt(x^{2} - a^{2})\right)}{dx}\\=&ln(x + sqrt(x^{2} - a^{2})) + \frac{x(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} - a^{2})^{\frac{1}{2}}})}{(x + sqrt(x^{2} - a^{2}))} - \frac{(2x + 0)*\frac{1}{2}}{(x^{2} - a^{2})^{\frac{1}{2}}}\\=&ln(x + sqrt(x^{2} - a^{2})) + \frac{x}{(x + sqrt(x^{2} - a^{2}))} + \frac{x^{2}}{(x + sqrt(x^{2} - a^{2}))(x^{2} - a^{2})^{\frac{1}{2}}} - \frac{x}{(x^{2} - a^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return