There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sin(2x)}{4} - \frac{x}{4} - \frac{sin(4x)}{16}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}sin(2x) - \frac{1}{4}x - \frac{1}{16}sin(4x)\right)}{dx}\\=&\frac{1}{4}cos(2x)*2 - \frac{1}{4} - \frac{1}{16}cos(4x)*4\\=&\frac{cos(2x)}{2} - \frac{cos(4x)}{4} - \frac{1}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !