There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{2}{(tan(\frac{x}{2}) - 1)} + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{2}{(tan(\frac{1}{2}x) - 1)} + 1)\right)}{dx}\\=&\frac{(2(\frac{-(sec^{2}(\frac{1}{2}x)(\frac{1}{2}) + 0)}{(tan(\frac{1}{2}x) - 1)^{2}}) + 0)}{(\frac{2}{(tan(\frac{1}{2}x) - 1)} + 1)}\\=&\frac{-sec^{2}(\frac{1}{2}x)}{(\frac{2}{(tan(\frac{1}{2}x) - 1)} + 1)(tan(\frac{1}{2}x) - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !