Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-ln({cot(x)}^{2} + 1)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{2}ln(cot^{2}(x) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{2}ln(cot^{2}(x) + 1)\right)}{dx}\\=&\frac{\frac{-1}{2}(-2cot(x)csc^{2}(x) + 0)}{(cot^{2}(x) + 1)}\\=&\frac{cot(x)csc^{2}(x)}{(cot^{2}(x) + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return