Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {arcsin(x)}^{29846758}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin^{29846758}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin^{29846758}(x)\right)}{dx}\\=&(\frac{29846758arcsin^{29846757}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{29846758arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{29846758arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&29846758(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{29846757}(x) + \frac{29846758(\frac{29846757arcsin^{29846756}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{29846758xarcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{29846758xarcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&29846758(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{29846757}(x) + \frac{29846758arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{29846758x(\frac{29846757arcsin^{29846756}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{890828933263806(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{890828933263806(\frac{29846756arcsin^{29846755}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{89540274x^{2}arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{29846758arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806xarcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{1781657866527612xarcsin^{29846756}(x)}{(-x^{2} + 1)^{2}} + \frac{6595598649637434680arcsin^{29846755}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{89540274x^{2}arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{29846758arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806xarcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{1781657866527612xarcsin^{29846756}(x)}{(-x^{2} + 1)^{2}} + \frac{6595598649637434680arcsin^{29846755}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&89540274(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}arcsin^{29846757}(x) + \frac{89540274*2xarcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{89540274x^{2}(\frac{29846757arcsin^{29846756}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + 29846758(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})arcsin^{29846757}(x) + \frac{29846758(\frac{29846757arcsin^{29846756}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{890828933263806arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{890828933263806x(\frac{29846756arcsin^{29846755}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + 1781657866527612(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})xarcsin^{29846756}(x) + \frac{1781657866527612arcsin^{29846756}(x)}{(-x^{2} + 1)^{2}} + \frac{1781657866527612x(\frac{29846756arcsin^{29846755}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} + \frac{6595598649637434680(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})arcsin^{29846755}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{6595598649637434680(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{29846755}(x)}{(-x^{2} + 1)} + \frac{6595598649637434680(\frac{29846755arcsin^{29846754}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{447701370x^{3}arcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{268620822xarcsin^{29846757}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{2672486799791418x^{2}arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{890828933263806arcsin^{29846756}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{10689947199165672x^{2}arcsin^{29846756}(x)}{(-x^{2} + 1)^{3}} + \frac{2672486799791418arcsin^{29846756}(x)}{(-x^{2} + 1)^{2}} + \frac{6595598649637434680xarcsin^{29846755}(x)}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{5255546774434682256xarcsin^{29846755}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}} + \frac{1340051875202752424xarcsin^{29846755}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{2133112741510025384arcsin^{29846754}(x)}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return