Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(arcsin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(arcsin(x))\right)}{dx}\\=&\frac{(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(arcsin(x))}\\=&\frac{1}{(-x^{2} + 1)^{\frac{1}{2}}arcsin(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}arcsin(x)}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{arcsin(x)} + \frac{(\frac{-(1)}{arcsin^{2}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{x}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)}\right)}{dx}\\=&\frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x}{arcsin(x)} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} + \frac{x(\frac{-(1)}{arcsin^{2}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)} - \frac{(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}arcsin(x)} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{2}(x)} - \frac{2x}{(-x^{2} + 1)^{2}arcsin^{2}(x)} + \frac{2}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}arcsin(x)} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{2}(x)} - \frac{2x}{(-x^{2} + 1)^{2}arcsin^{2}(x)} + \frac{2}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)}\right)}{dx}\\=&\frac{3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}}{arcsin(x)} + \frac{3*2x}{(-x^{2} + 1)^{\frac{5}{2}}arcsin(x)} + \frac{3x^{2}(\frac{-(1)}{arcsin^{2}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})}{arcsin(x)} + \frac{(\frac{-(1)}{arcsin^{2}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x}{(-x^{2} + 1)^{\frac{3}{2}}arcsin^{2}(x)} - \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{2}(x)} - \frac{x(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} - \frac{2(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x}{arcsin^{2}(x)} - \frac{2}{(-x^{2} + 1)^{2}arcsin^{2}(x)} - \frac{2x(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} + \frac{2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)} + \frac{2(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{(-x^{2} + 1)arcsin^{3}(x)} + \frac{2(\frac{-3(1)}{arcsin^{4}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{15x^{3}}{(-x^{2} + 1)^{\frac{7}{2}}arcsin(x)} + \frac{9x}{(-x^{2} + 1)^{\frac{5}{2}}arcsin(x)} - \frac{3x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}arcsin^{2}(x)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}arcsin^{2}(x)} - \frac{12x^{2}}{(-x^{2} + 1)^{3}arcsin^{2}(x)} - \frac{3}{(-x^{2} + 1)^{2}arcsin^{2}(x)} + \frac{2x}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)} + \frac{4x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}arcsin^{3}(x)} + \frac{6x}{(-x^{2} + 1)^{\frac{5}{2}}arcsin^{3}(x)} - \frac{6}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{4}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return