Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{({e}^{x} + {e}^{2}x + {e}^{3}x)}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})\right)}{dx}\\=&\frac{(\frac{1}{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + \frac{1}{3}e^{2} + \frac{1}{3}x*2e*0 + \frac{1}{3}e^{3} + \frac{1}{3}x*3e^{2}*0)}{(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})}\\=&\frac{{e}^{x}}{3(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})} + \frac{e^{2}}{3(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})} + \frac{e^{3}}{3(\frac{1}{3}{e}^{x} + \frac{1}{3}xe^{2} + \frac{1}{3}xe^{3})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return