Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(6x - 5 + (2sqrt(59))sqrt(3{x}^{2} - 5x + 7))}{sqrt(59)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)}{sqrt(59)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)}{sqrt(59)}\right)}{dx}\\=&\frac{(6 + 2*0*\frac{1}{2}*59^{\frac{1}{2}}sqrt(3x^{2} - 5x + 7) + \frac{2sqrt(59)(3*2x - 5 + 0)*\frac{1}{2}}{(3x^{2} - 5x + 7)^{\frac{1}{2}}} + 0)}{(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)sqrt(59)} + \frac{ln(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)*-0*\frac{1}{2}*59^{\frac{1}{2}}}{(59)}\\=&\frac{6}{(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)sqrt(59)} + \frac{6x}{(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)(3x^{2} - 5x + 7)^{\frac{1}{2}}} - \frac{5}{(6x + 2sqrt(59)sqrt(3x^{2} - 5x + 7) - 5)(3x^{2} - 5x + 7)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return