There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {10}^{x} + {\frac{1}{10}}^{x} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {10}^{x} + {\frac{1}{10}}^{x} - 1\right)}{dx}\\=&({10}^{x}((1)ln(10) + \frac{(x)(0)}{(10)})) + ({\frac{1}{10}}^{x}((1)ln(\frac{1}{10}) + \frac{(x)(0)}{(\frac{1}{10})})) + 0\\=&{10}^{x}ln(10) + {\frac{1}{10}}^{x}ln(\frac{1}{10})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !