Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(sec(x + a))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sec^{2}(x + a)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sec^{2}(x + a)\right)}{dx}\\=&2sec^{2}(x + a)tan(x + a)(1 + 0)\\=&2tan(x + a)sec^{2}(x + a)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2tan(x + a)sec^{2}(x + a)\right)}{dx}\\=&2sec^{2}(x + a)(1 + 0)sec^{2}(x + a) + 2tan(x + a)*2sec^{2}(x + a)tan(x + a)(1 + 0)\\=&2sec^{4}(x + a) + 4tan^{2}(x + a)sec^{2}(x + a)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return