Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ ln({e}^{x} + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{87178291200{e}^{(15x)}}{({e}^{x} + 1)^{15}} - \frac{653837184000{e}^{(14x)}}{({e}^{x} + 1)^{14}} + \frac{2179457280000{e}^{(13x)}}{({e}^{x} + 1)^{13}} - \frac{4249941696000{e}^{(12x)}}{({e}^{x} + 1)^{12}} + \frac{5368729766400{e}^{(11x)}}{({e}^{x} + 1)^{11}} - \frac{4595022432000{e}^{(10x)}}{({e}^{x} + 1)^{10}} + \frac{2706620716800{e}^{(9x)}}{({e}^{x} + 1)^{9}} - \frac{1091804313600{e}^{(8x)}}{({e}^{x} + 1)^{8}} + \frac{294293759760{e}^{(7x)}}{({e}^{x} + 1)^{7}} - \frac{50483192760{e}^{(6x)}}{({e}^{x} + 1)^{6}} + \frac{5058406080{e}^{(5x)}}{({e}^{x} + 1)^{5}} - \frac{254135700{e}^{(4x)}}{({e}^{x} + 1)^{4}} + \frac{4750202{e}^{(3x)}}{({e}^{x} + 1)^{3}} - \frac{16383{e}^{(2x)}}{({e}^{x} + 1)^{2}} + \frac{{e}^{x}}{({e}^{x} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return