There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ lg({10}^{x} - 10)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg({10}^{x} - 10)\right)}{dx}\\=&\frac{(({10}^{x}((1)ln(10) + \frac{(x)(0)}{(10)})) + 0)}{ln{10}({10}^{x} - 10)}\\=&\frac{{10}^{x}ln(10)}{({10}^{x} - 10)ln{10}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{10}^{x}ln(10)}{({10}^{x} - 10)ln{10}}\right)}{dx}\\=&\frac{(\frac{-(({10}^{x}((1)ln(10) + \frac{(x)(0)}{(10)})) + 0)}{({10}^{x} - 10)^{2}}){10}^{x}ln(10)}{ln{10}} + \frac{({10}^{x}((1)ln(10) + \frac{(x)(0)}{(10)}))ln(10)}{({10}^{x} - 10)ln{10}} + \frac{{10}^{x}*0}{({10}^{x} - 10)(10)ln{10}} + \frac{{10}^{x}ln(10)*-0}{({10}^{x} - 10)ln^{2}{10}}\\=&\frac{-{10}^{(2x)}ln^{2}(10)}{({10}^{x} - 10)^{2}ln{10}} + \frac{{10}^{x}ln^{2}(10)}{({10}^{x} - 10)ln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !