There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (2 - x){\frac{1}{(1 - x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x}{(-x + 1)^{2}} + \frac{2}{(-x + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x}{(-x + 1)^{2}} + \frac{2}{(-x + 1)^{2}}\right)}{dx}\\=& - (\frac{-2(-1 + 0)}{(-x + 1)^{3}})x - \frac{1}{(-x + 1)^{2}} + 2(\frac{-2(-1 + 0)}{(-x + 1)^{3}})\\=& - \frac{2x}{(-x + 1)^{3}} + \frac{4}{(-x + 1)^{3}} - \frac{1}{(-x + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2x}{(-x + 1)^{3}} + \frac{4}{(-x + 1)^{3}} - \frac{1}{(-x + 1)^{2}}\right)}{dx}\\=& - 2(\frac{-3(-1 + 0)}{(-x + 1)^{4}})x - \frac{2}{(-x + 1)^{3}} + 4(\frac{-3(-1 + 0)}{(-x + 1)^{4}}) - (\frac{-2(-1 + 0)}{(-x + 1)^{3}})\\=& - \frac{6x}{(-x + 1)^{4}} + \frac{12}{(-x + 1)^{4}} - \frac{4}{(-x + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !