There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt({x}^{2} + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} + x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} + x)\right)}{dx}\\=&\frac{(2x + 1)*\frac{1}{2}}{(x^{2} + x)^{\frac{1}{2}}}\\=&\frac{x}{(x^{2} + x)^{\frac{1}{2}}} + \frac{1}{2(x^{2} + x)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(x^{2} + x)^{\frac{1}{2}}} + \frac{1}{2(x^{2} + x)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(2x + 1)}{(x^{2} + x)^{\frac{3}{2}}})x + \frac{1}{(x^{2} + x)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + 1)}{(x^{2} + x)^{\frac{3}{2}}})}{2}\\=&\frac{-x^{2}}{(x^{2} + x)^{\frac{3}{2}}} - \frac{x}{(x^{2} + x)^{\frac{3}{2}}} + \frac{1}{(x^{2} + x)^{\frac{1}{2}}} - \frac{1}{4(x^{2} + x)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !