There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{1}{(1 - x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{(-x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{(-x + 1)})\right)}{dx}\\=&\frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{(\frac{1}{(-x + 1)})}\\=&\frac{1}{(-x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-x + 1)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 1)^{2}})\\=&\frac{1}{(-x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !