Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{{x}^{2}}{(1 - {x}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x^{2}}{(-x^{2} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x^{2}}{(-x^{2} + 1)})\right)}{dx}\\=&\frac{((\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x^{2} + \frac{2x}{(-x^{2} + 1)})}{(\frac{x^{2}}{(-x^{2} + 1)})}\\=&\frac{2x}{(-x^{2} + 1)} + \frac{2}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{(-x^{2} + 1)} + \frac{2}{x}\right)}{dx}\\=&2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x + \frac{2}{(-x^{2} + 1)} + \frac{2*-1}{x^{2}}\\=&\frac{4x^{2}}{(-x^{2} + 1)^{2}} + \frac{2}{(-x^{2} + 1)} - \frac{2}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return