There are 1 questions in this calculation: for each question, the 1 derivative of rho is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{rhofri(xianzhuansu - V)sqrt(U{1}^{2} + {(xianzhuansu - V)}^{2})}{8}\ with\ respect\ to\ rho:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}ssqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2}) - \frac{1}{8}r^{2}hofiVsqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}ssqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2}) - \frac{1}{8}r^{2}hofiVsqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})\right)}{drho}\\=&\frac{\frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}s(0 + 0 + 0 + 0)*\frac{1}{2}}{(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})^{\frac{1}{2}}} - \frac{\frac{1}{8}r^{2}hofiV(0 + 0 + 0 + 0)*\frac{1}{2}}{(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})^{\frac{1}{2}}}\\=& - \frac{0}{16}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !