There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ cos(ln(x)) - sin(ln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(ln(x)) - sin(ln(x))\right)}{dx}\\=&\frac{-sin(ln(x))}{(x)} - \frac{cos(ln(x))}{(x)}\\=&\frac{-sin(ln(x))}{x} - \frac{cos(ln(x))}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(ln(x))}{x} - \frac{cos(ln(x))}{x}\right)}{dx}\\=&\frac{--sin(ln(x))}{x^{2}} - \frac{cos(ln(x))}{x(x)} - \frac{-cos(ln(x))}{x^{2}} - \frac{-sin(ln(x))}{x(x)}\\=&\frac{2sin(ln(x))}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2sin(ln(x))}{x^{2}}\right)}{dx}\\=&\frac{2*-2sin(ln(x))}{x^{3}} + \frac{2cos(ln(x))}{x^{2}(x)}\\=&\frac{-4sin(ln(x))}{x^{3}} + \frac{2cos(ln(x))}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4sin(ln(x))}{x^{3}} + \frac{2cos(ln(x))}{x^{3}}\right)}{dx}\\=&\frac{-4*-3sin(ln(x))}{x^{4}} - \frac{4cos(ln(x))}{x^{3}(x)} + \frac{2*-3cos(ln(x))}{x^{4}} + \frac{2*-sin(ln(x))}{x^{3}(x)}\\=&\frac{10sin(ln(x))}{x^{4}} - \frac{10cos(ln(x))}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !