There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})x - (\frac{1}{4})sin(2)x + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{4}xsin(2) + \frac{1}{2}x + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{4}xsin(2) + \frac{1}{2}x + C\right)}{dx}\\=& - \frac{1}{4}sin(2) - \frac{1}{4}xcos(2)*0 + \frac{1}{2} + 0\\=& - \frac{sin(2)}{4} + \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !