There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x - 3)}^{2}}{(4(x - 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(4x - 4)} - \frac{6x}{(4x - 4)} + \frac{9}{(4x - 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(4x - 4)} - \frac{6x}{(4x - 4)} + \frac{9}{(4x - 4)}\right)}{dx}\\=&(\frac{-(4 + 0)}{(4x - 4)^{2}})x^{2} + \frac{2x}{(4x - 4)} - 6(\frac{-(4 + 0)}{(4x - 4)^{2}})x - \frac{6}{(4x - 4)} + 9(\frac{-(4 + 0)}{(4x - 4)^{2}})\\=&\frac{-4x^{2}}{(4x - 4)^{2}} + \frac{2x}{(4x - 4)} + \frac{24x}{(4x - 4)^{2}} - \frac{36}{(4x - 4)^{2}} - \frac{6}{(4x - 4)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4x^{2}}{(4x - 4)^{2}} + \frac{2x}{(4x - 4)} + \frac{24x}{(4x - 4)^{2}} - \frac{36}{(4x - 4)^{2}} - \frac{6}{(4x - 4)}\right)}{dx}\\=&-4(\frac{-2(4 + 0)}{(4x - 4)^{3}})x^{2} - \frac{4*2x}{(4x - 4)^{2}} + 2(\frac{-(4 + 0)}{(4x - 4)^{2}})x + \frac{2}{(4x - 4)} + 24(\frac{-2(4 + 0)}{(4x - 4)^{3}})x + \frac{24}{(4x - 4)^{2}} - 36(\frac{-2(4 + 0)}{(4x - 4)^{3}}) - 6(\frac{-(4 + 0)}{(4x - 4)^{2}})\\=&\frac{32x^{2}}{(4x - 4)^{3}} - \frac{16x}{(4x - 4)^{2}} - \frac{192x}{(4x - 4)^{3}} + \frac{288}{(4x - 4)^{3}} + \frac{48}{(4x - 4)^{2}} + \frac{2}{(4x - 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !