There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(4cos(2)x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{\frac{1}{2}}cos^{\frac{1}{2}}(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{\frac{1}{2}}cos^{\frac{1}{2}}(2)\right)}{dx}\\=&\frac{2*\frac{1}{2}cos^{\frac{1}{2}}(2)}{x^{\frac{1}{2}}} + \frac{2x^{\frac{1}{2}}*\frac{-1}{2}sin(2)*0}{cos^{\frac{1}{2}}(2)}\\=&\frac{cos^{\frac{1}{2}}(2)}{x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !