There are 1 questions in this calculation: for each question, the 5 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 5th\ derivative\ of\ function\ ln(1 + x + xx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x^{2} + x + 1)\\\\ &\color{blue}{The\ 5th\ derivative\ of\ function:} \\=&\frac{768x^{5}}{(x^{2} + x + 1)^{5}} + \frac{1920x^{4}}{(x^{2} + x + 1)^{5}} - \frac{960x^{3}}{(x^{2} + x + 1)^{4}} + \frac{1920x^{3}}{(x^{2} + x + 1)^{5}} + \frac{960x^{2}}{(x^{2} + x + 1)^{5}} - \frac{1440x^{2}}{(x^{2} + x + 1)^{4}} + \frac{240x}{(x^{2} + x + 1)^{3}} - \frac{720x}{(x^{2} + x + 1)^{4}} + \frac{240x}{(x^{2} + x + 1)^{5}} - \frac{120}{(x^{2} + x + 1)^{4}} + \frac{120}{(x^{2} + x + 1)^{3}} + \frac{24}{(x^{2} + x + 1)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !