Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{cos(x)}{e^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(x)}{e^{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(x)}{e^{x}}\right)}{dx}\\=&\frac{-e^{x}cos(x)}{e^{{x}*{2}}} + \frac{-sin(x)}{e^{x}}\\=&\frac{-cos(x)}{e^{x}} - \frac{sin(x)}{e^{x}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-cos(x)}{e^{x}} - \frac{sin(x)}{e^{x}}\right)}{dx}\\=&\frac{--e^{x}cos(x)}{e^{{x}*{2}}} - \frac{-sin(x)}{e^{x}} - \frac{-e^{x}sin(x)}{e^{{x}*{2}}} - \frac{cos(x)}{e^{x}}\\=&\frac{2sin(x)}{e^{x}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return