There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(sin({x}^{x}))}^{2} + {(cos({e}^{(xln(x))}))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin^{2}({x}^{x}) + cos^{2}({e}^{(xln(x))})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin^{2}({x}^{x}) + cos^{2}({e}^{(xln(x))})\right)}{dx}\\=&2sin({x}^{x})cos({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + -2cos({e}^{(xln(x))})sin({e}^{(xln(x))})({e}^{(xln(x))}((ln(x) + \frac{x}{(x)})ln(e) + \frac{(xln(x))(0)}{(e)}))\\=&2{x}^{x}ln(x)sin({x}^{x})cos({x}^{x}) + 2{x}^{x}sin({x}^{x})cos({x}^{x}) - 2{e}^{(xln(x))}ln(x)sin({e}^{(xln(x))})cos({e}^{(xln(x))}) - 2{e}^{(xln(x))}sin({e}^{(xln(x))})cos({e}^{(xln(x))})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !