There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - (\frac{(2{(sin(x))}^{3})}{(3cos(x))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - \frac{\frac{2}{3}sin^{3}(x)}{cos(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - \frac{\frac{2}{3}sin^{3}(x)}{cos(x)}\right)}{dx}\\=&1 - \frac{\frac{2}{3}*3sin^{2}(x)cos(x)}{cos(x)} - \frac{\frac{2}{3}sin^{3}(x)sin(x)}{cos^{2}(x)}\\=& - \frac{2sin^{4}(x)}{3cos^{2}(x)} - 2sin^{2}(x) + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !