Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {e}^{(5x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(5x + 2)}\right)}{dx}\\=&({e}^{(5x + 2)}((5 + 0)ln(e) + \frac{(5x + 2)(0)}{(e)}))\\=&5{e}^{(5x + 2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5{e}^{(5x + 2)}\right)}{dx}\\=&5({e}^{(5x + 2)}((5 + 0)ln(e) + \frac{(5x + 2)(0)}{(e)}))\\=&25{e}^{(5x + 2)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 25{e}^{(5x + 2)}\right)}{dx}\\=&25({e}^{(5x + 2)}((5 + 0)ln(e) + \frac{(5x + 2)(0)}{(e)}))\\=&125{e}^{(5x + 2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return