Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{1}{({2}^{x} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{({2}^{x} + 1)}\right)}{dx}\\=&(\frac{-(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{2}})\\=&\frac{-{2}^{x}ln(2)}{({2}^{x} + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-{2}^{x}ln(2)}{({2}^{x} + 1)^{2}}\right)}{dx}\\=&-(\frac{-2(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{3}}){2}^{x}ln(2) - \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)}{({2}^{x} + 1)^{2}} - \frac{{2}^{x}*0}{({2}^{x} + 1)^{2}(2)}\\=&\frac{2 * {2}^{(2x)}ln^{2}(2)}{({2}^{x} + 1)^{3}} - \frac{{2}^{x}ln^{2}(2)}{({2}^{x} + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2 * {2}^{(2x)}ln^{2}(2)}{({2}^{x} + 1)^{3}} - \frac{{2}^{x}ln^{2}(2)}{({2}^{x} + 1)^{2}}\right)}{dx}\\=&2(\frac{-3(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{4}}){2}^{(2x)}ln^{2}(2) + \frac{2({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))ln^{2}(2)}{({2}^{x} + 1)^{3}} + \frac{2 * {2}^{(2x)}*2ln(2)*0}{({2}^{x} + 1)^{3}(2)} - (\frac{-2(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{3}}){2}^{x}ln^{2}(2) - \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)}{({2}^{x} + 1)^{2}} - \frac{{2}^{x}*2ln(2)*0}{({2}^{x} + 1)^{2}(2)}\\=&\frac{-6 * {2}^{(3x)}ln^{3}(2)}{({2}^{x} + 1)^{4}} + \frac{4 * {2}^{(2x)}ln^{3}(2)}{({2}^{x} + 1)^{3}} + \frac{2 * {2}^{(2(x))}ln^{3}(2)}{({2}^{x} + 1)^{3}} - \frac{{2}^{x}ln^{3}(2)}{({2}^{x} + 1)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6 * {2}^{(3x)}ln^{3}(2)}{({2}^{x} + 1)^{4}} + \frac{4 * {2}^{(2x)}ln^{3}(2)}{({2}^{x} + 1)^{3}} + \frac{2 * {2}^{(2(x))}ln^{3}(2)}{({2}^{x} + 1)^{3}} - \frac{{2}^{x}ln^{3}(2)}{({2}^{x} + 1)^{2}}\right)}{dx}\\=&-6(\frac{-4(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{5}}){2}^{(3x)}ln^{3}(2) - \frac{6({2}^{(3x)}((3)ln(2) + \frac{(3x)(0)}{(2)}))ln^{3}(2)}{({2}^{x} + 1)^{4}} - \frac{6 * {2}^{(3x)}*3ln^{2}(2)*0}{({2}^{x} + 1)^{4}(2)} + 4(\frac{-3(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{4}}){2}^{(2x)}ln^{3}(2) + \frac{4({2}^{(2x)}((2)ln(2) + \frac{(2x)(0)}{(2)}))ln^{3}(2)}{({2}^{x} + 1)^{3}} + \frac{4 * {2}^{(2x)}*3ln^{2}(2)*0}{({2}^{x} + 1)^{3}(2)} + 2(\frac{-3(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{4}}){2}^{(2(x))}ln^{3}(2) + \frac{2({2}^{(2(x))}((2(1))ln(2) + \frac{(2(x))(0)}{(2)}))ln^{3}(2)}{({2}^{x} + 1)^{3}} + \frac{2 * {2}^{(2(x))}*3ln^{2}(2)*0}{({2}^{x} + 1)^{3}(2)} - (\frac{-2(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})) + 0)}{({2}^{x} + 1)^{3}}){2}^{x}ln^{3}(2) - \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2)}{({2}^{x} + 1)^{2}} - \frac{{2}^{x}*3ln^{2}(2)*0}{({2}^{x} + 1)^{2}(2)}\\=&\frac{24 * {2}^{(4x)}ln^{4}(2)}{({2}^{x} + 1)^{5}} - \frac{36 * {2}^{(3x)}ln^{4}(2)}{({2}^{x} + 1)^{4}} + \frac{12 * {2}^{(2x)}ln^{4}(2)}{({2}^{x} + 1)^{3}} + \frac{2 * {2}^{(2(x))}ln^{4}(2)}{({2}^{x} + 1)^{3}} - \frac{{2}^{x}ln^{4}(2)}{({2}^{x} + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return