Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({e}^{x})(({e}^{x}) - x - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2(x))} - x{e}^{x} - {e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2(x))} - x{e}^{x} - {e}^{x}\right)}{dx}\\=&({e}^{(2(x))}((2(1))ln(e) + \frac{(2(x))(0)}{(e)})) - {e}^{x} - x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&2{e}^{(2x)} - 2{e}^{x} - x{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{e}^{(2x)} - 2{e}^{x} - x{e}^{x}\right)}{dx}\\=&2({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - {e}^{x} - x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&4{e}^{(2x)} - 3{e}^{x} - x{e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return